
GOOD CODING VS BAD CODING

Bad code is like an untidy room, you spend hours in finding

things and when you try to add something, you are just

adding mess. Good code is like a tidy room, you immediately

find things, and you can easily change them.

One day I visited an accountant, amazed for the tideness in

the office. He had hundreds of customers and hundreds of

documents for each customer, but as I requested one of the

documents, the secretary finded it in thirty seconds. I asked

her how she could be so fast and she told me they were very

well organized. The same is true for coding: if you write

good code, you can easily apply new changes in a few

minutes, without spending too much time in understanding

the code, in locating the lines of code to modify, or worrying

about side effects.

A disorganized accountant can survive with one customer,

maybe he can survive with ten, and you'd probably still get

your document in two days... but he can't survive with one

hundred. The same is valid for coding: you might have bad

code and still be able to work, if you just have to maintain a

small piece of code; you might have an hard time, if you

have a slightly larger one; but you can't survive, if you have a

huge software. One day will come that you have to rewrite it

entirely.

The code quality is related to the speed of development, and

a good developer is as fast as a well organized accountant,

which can find and update documents very quickly. A fast

developer that writes bad code, hovewer, is like a vagrant

with a shiny suite: he will look great to the management, but

he will pretty soon slow down the entire project and will

hazard the business.

Remember, the speed of development is not just the time

you spend to develop a certain functionality, but the time

others will spend in extending your code. The speed of

development can increase over time, as you indulge in

bad practices, but it can improve with refactoring.

Whenever you extend your codebase with new features, you

add complexity and the time of development for each new

feature can only go up, or remain the same, in the best case.

This also happens when the accountant get new customers

and new documents, or when you add something new to your

room. You are adding more and more chaos. The solution is

to reduce the complexity by making the code more simple

and easy to maintain and understand. That's achieved by

reorganizing things in a better way, to reduce complexity

again. You cannot foresee how your software will change in

the future, and the accountant cannot foresee which new laws

he will have to comply with. The only way to cope with the

increased complexity is reorganizing and simplifying things.

In software development this is called refactoring. Every

time you refactor your code, you are reducing time and

costs of future developments, and you are reducing

complexity in the development process.

Now, if you write good code, without refactoring,

complexity can still slowly go up. In the best case scenario, it

will remain stable, but it will never go down. However, if

you indulge in writing bad code, complexity will skyrocket

and you will be soon in trouble.

When developers are only driven by the speed, they will be

slower and slower. When they are driven by the quality, they

will be faster and faster.

Software is not something printed in hard rock, that will

never change, software is dynamic and must be maintainable.

Everything has been said about good practices and good

coding can be reduced to one single factor: maintainability.

When the code is maintainable, it is also good code. If it is

good code, it is easy to change, easy to undersand and

keeps the costs low.

It also drastically reduces bugs, for the same reason an

organized accountant will commit less errors. A clear design

and a self-explanatory code are not error-prone, they tend to

make errors so evident, that they look like a lighthouse in the

middle of the night.

Sometimes the code can be so nebulous and the developers

so thoughtless, that they spend most of the time fixing bugs.

They keep fixing problems introduced the day before.

Here is a fantastic indicator: if you notice that you are

spending most of your time fixing bugs, stop one second

and think about the quality of your code. Probably you

need to think to some serious refactoring, because that's one

of the reasons your development will slow down and your

project will fail.

How do you write good code then? Simple, all you need to

do is writing maintainable code: you need to be able to find,

understand and change things easily. Be simple, don't add

complexity, and refactor your code.

	GOOD CODING VS BAD CODING

